Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74.140
Filtrar
1.
BMC Complement Med Ther ; 24(1): 157, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609946

RESUMO

BACKGROUND: Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS: The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS: Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION: It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Citrus , Óleos Voláteis , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologia , Flores
2.
Sci Rep ; 14(1): 8608, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615032

RESUMO

This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 µM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 µM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 µM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.


Assuntos
Cádmio , Cucurbita , Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , Sementes
3.
Int J Nanomedicine ; 19: 3315-3332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617797

RESUMO

Background: Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods: In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results: The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion: Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Animais , Ratos , Peróxido de Hidrogênio , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Carbono
4.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622377

RESUMO

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Assuntos
Cobalto , Nanopartículas Metálicas , Óxidos , Tiofanato , Nanopartículas Metálicas/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Prata/química , Peroxidases
5.
Mikrochim Acta ; 191(5): 268, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627271

RESUMO

Hybrid nanozyme graphene quantum dots (GQDs) deposited TiO2 nanotubes (NTs) on titanium foil (Ti/TiO2 NTs-GQDs) were manufactured by bestowing the hybrid with the advantageous porous morphology, surface valence states, high surface area, and copious active sites. The peroxidase-like activity was investigated through the catalytic oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which can be visualized by the eyes. TiO2 NTs and GQDs comprising oxygen-containing functional groups can oxidize TMB in the presence of H2O2 by mimicking peroxidase enzymes. The peroxidase-mimicking activity of hybrid nanozyme was significantly escalated by introducing light illumination due to the photosensitive features of the hybrid material. The peroxidase-like activity of Ti/TiO2 NTs-GQDs enabled H2O2 determination over the linear range of 7 to 250 µM, with a LOD of 2.1 µM. The satisfying peroxidase activity is possibly due to the unimpeded access of H2O2 to the catalyst's active sites. The porous morphology provides the easy channeling of reactants and products. The periodic structure of the material also gave rise to acceptable reproducibility. Without material functionalization, the Ti/TiO2 NTs-GQDs can be a promising substitute for peroxidases for H2O2 detection.


Assuntos
Benzidinas , Grafite , Nanotubos , Pontos Quânticos , Grafite/química , Peroxidase/química , Pontos Quânticos/química , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Nanotubos/química
6.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Sterculia , Ratos , Animais , Ratos Wistar , Fármacos Neuroprotetores/farmacologia , Caspase 3 , Peróxido de Hidrogênio , Oxidopamina , Etanol/toxicidade
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612494

RESUMO

Climate change causes shifts in temperature patterns, and plants adapt their chemical content in order to survive. We compared the effect of low (LT) and high (HT) growing temperatures on the phytochemical content of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens and the bioactivity of their extracts. Using different spectrophotometric, LC-MS/MS, GC-MS, and statistical methods, we found that LT increased the total phenolics and tannins in broccoli. The total glucosinolates were also increased by LT; however, they were decreased by HT. Soluble sugars, known osmoprotectants, were increased by both types of stress, considerably more by HT than LT, suggesting that HT causes a more intense osmotic imbalance. Both temperatures were detrimental for chlorophyll, with HT being more impactful than LT. HT increased hormone indole-3-acetic acid, implying an important role in broccoli's defense. Ferulic and sinapic acid showed a trade-off scheme: HT increased ferulic while LT increased sinapic acid. Both stresses decreased the potential of broccoli to act against H2O2 damage in mouse embryonal fibroblasts (MEF), human keratinocytes, and liver cancer cells. Among the tested cell types treated by H2O2, the most significant reduction in ROS (36.61%) was recorded in MEF cells treated with RT extracts. The potential of broccoli extracts to inhibit α-amylase increased following both temperature stresses; however, the inhibition of pancreatic lipase was increased by LT only. From the perspective of nutritional value, and based on the obtained results, we conclude that LT conditions result in more nutritious broccoli microgreens than HT.


Assuntos
Brassica , Ácidos Cumáricos , Humanos , Animais , Camundongos , Temperatura , Cromatografia Líquida , Peróxido de Hidrogênio , Espectrometria de Massas em Tandem
8.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612502

RESUMO

Leaf senescence is the terminal stage of leaf development, and its initiation and progression are closely controlled by the integration of a myriad of endogenous signals and environmental stimuli. It has been documented that WRKY transcription factors (TFs) play essential roles in regulating leaf senescence, yet the molecular mechanism of WRKY-mediated leaf senescence still lacks detailed elucidation in crop plants. In this study, we cloned and identified a tobacco WRKY TF gene, designated NtWRKY70b, acting as a positive regulator of natural leaf senescence. The expression profile analysis showed that NtWRKY70b transcript levels were induced by aging and hydrogen peroxide (H2O2) and downregulated upon hydrogen sulfide (H2S) treatment. The physiological and biochemical assays revealed that overexpression of NtWRKY70b (OE) clearly promoted leaf senescence, triggering increased levels of reactive oxygen species (ROS) and decreased H2S content, while disruption of NtWRKY70b by chimeric repressor silencing technology (SRDX) significantly delayed the onset of leaf senescence, leading to a decreased accumulation of ROS and elevated concentration of H2S. The quantitative real-time PCR analysis showed that the expression levels of various senescence-associated genes and ROS biosynthesis-related genes (NtRbohD and NtRbohE) were upregulated in OE lines, while the expression of H2S biosynthesis-related genes (NtDCD and NtCYSC1) were inhibited in OE lines. Furthermore, the Yeast one-hybrid analysis (Y1H) and dual luciferase assays showed that NtWRKY70b could directly upregulate the expression of an ROS biosynthesis-related gene (NtRbohD) and a chlorophyll degradation-related gene (NtPPH) by binding to their promoter sequences. Accordingly, these results indicated that NtWYKY70b directly activated the transcript levels of NtRbohD and NtPPH and repressed the expression of NtDCD and NtCYCS1, thereby promoting ROS accumulation and impairing the endogenous H2S production, and subsequently accelerating leaf aging. These observations improve our knowledge of the regulatory mechanisms of WRKY TFs controlling leaf senescence and provide a novel method for ensuring high agricultural crop productivity via genetic manipulation of leaf senescence in crops.


Assuntos
Sulfeto de Hidrogênio , Fatores de Transcrição , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio , Senescência Vegetal , Peróxido de Hidrogênio , Tabaco/genética , Saccharomyces cerevisiae
9.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
10.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613037

RESUMO

Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1ß (IL-1ß), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Células Endoteliais , Fibroblastos , Mitocôndrias , Colágeno
11.
World J Microbiol Biotechnol ; 40(5): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613738

RESUMO

Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.


Assuntos
Fragaria , Rhizopus , Sedum , Flavonoides/farmacologia , Peróxido de Hidrogênio , Citocromos c , Mitocôndrias
12.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605329

RESUMO

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Assuntos
Brassica , Compostagem , Ácidos Indolacéticos , Poluentes do Solo , Humanos , Níquel/metabolismo , Níquel/toxicidade , Brassica/metabolismo , Peróxido de Hidrogênio/metabolismo , Rizosfera , Clorofila A , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
13.
Int J Nanomedicine ; 19: 3295-3314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606373

RESUMO

Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.


Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Ratos , Animais , Exossomos/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Miócitos Cardíacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , RNA Mensageiro/metabolismo , Apoptose , MicroRNAs/genética
14.
Food Res Int ; 184: 114251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609229

RESUMO

Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.


Assuntos
Catequina , Diospyros , Doenças Neurodegenerativas , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia
15.
Anal Chim Acta ; 1303: 342520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609255

RESUMO

BACKGROUND: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally. Electrochemiluminescence (ECL) has gained widespread research attention due to its high sensitivity, ease of operation, effective spatiotemporal control, and close to zero background signal. RESULTS: In this work, a sandwich-type ECL immunosensor for detecting CD44 was constructed using luminol as a luminophore. In this sensing platform, bimetallic MOFs (Pd@FeNi-MIL-88B) loaded with palladium nanoparticles (Pd NPs) were used as a novel enzyme mimic, exhibiting excellent catalytic performance towards the electroreduction of H2O2. The hybrids provided a strong support platform for luminol and antibodies, significantly enhancing the initial ECL signal of luminol. Subsequently, core-shell Au@MnO2 nanocomposites were synthesised by gold nanoparticles (Au NPs) encapsulated in manganese dioxide (MnO2) thin layers, as labels. In the luminol/H2O2 system, Au@MnO2 exhibited strong light absorption in the broad UV-vis spectrum, similar to the black body effect, and the scavenging effect of Mn2+ on O2•-, which achieved the dual-quenching of ECL signal. Under the optimal experimental conditions, the immunosensor demonstrated a detection range of 0.1 pg mL-1 - 100 ng mL-1, with a detection limit of 0.069 pg mL-1. SIGNIFICANCE: Based on Pd@FeNi-MIL-88B nanoenzymes and Au@MnO2 nanocomposites, a dual-quenching sandwich-type ECL immunosensor for the detection of CD44 was constructed. The proposed immunosensor exhibited excellent reproducibility, stability, selectivity, and sensitivity, and provided a valuable analytical strategy and technical platform for the accurate detection of disease biomarkers, and opened up potential application prospects for early clinical treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , Compostos de Manganês , Ouro , Peróxido de Hidrogênio , Luminol , Reprodutibilidade dos Testes , Imunoensaio , Óxidos , Paládio , Receptores de Hialuronatos
16.
BMC Biol ; 22(1): 81, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609978

RESUMO

BACKGROUND: Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated. RESULTS: Three oxidative stress response regulating Zn2Cys6 transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H2O2 and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation. CONCLUSIONS: These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.


Assuntos
Ciclinas , Fatores de Transcrição , Fatores de Transcrição/genética , Peróxido de Hidrogênio , Ciclo Celular , Estresse Oxidativo , Antioxidantes
17.
Anal Chem ; 96(15): 6072-6078, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577757

RESUMO

The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.


Assuntos
Técnicas Biossensoriais , Nanosferas , Agentes Neurotóxicos , Praguicidas , Humanos , Acetilcolinesterase/metabolismo , Compostos Organofosforados , Praguicidas/análise , Peróxido de Hidrogênio , Ecossistema , Oxirredutases , Peroxidase , Colorimetria
18.
Environ Sci Technol ; 58(15): 6564-6574, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578220

RESUMO

Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 µM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Material Particulado/análise , Oxidantes , Água , Aerossóis
19.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579389

RESUMO

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Assuntos
Cobalto , Peróxido de Hidrogênio , Neoplasias , Óxidos , Humanos , Porosidade , Espécies Reativas de Oxigênio , Glucose Oxidase , Imidazóis , Carbono , Glutationa , Zinco , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Anal Chem ; 96(15): 5960-5967, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38581372

RESUMO

Nonobstructive azoospermia (NOA) is an important cause of infertility, and intracytoplasmic sperm injection (ICSI) is the mainstay of treatment for these patients. In cases where a sufficient number of sperm (usually 1-2) is not available, the selection of oocytes for ICSI is a difficult problem that must be solved. Here, we constructed a dual-activated oxidative stress-responsive AIE probe, b-PyTPA. The strong donor-acceptor configuration of b-PyTPA leads to twisted intramolecular charge transfer (TICT) effect that quenches the fluorescence of the probe, however, H2O2 would specifically remove the boronatebenzyl unit and release a much weaker acceptor, which inhibits TICT and restores the fluorescence. In addition, the presence of a pyridine salt makes b-PyTPA more hydrophilic, whereas removal of the pyridine salt increases the hydrophobicity of PyTPA, which triggers aggregation and further enhances fluorescence. Thus, the higher the intracellular level of oxidative stress, the stronger the fluorescence. In vitro, this dual-activated fluorescent probe is capable of accurately detecting senescent cells (high oxidative stress). More importantly, b-PyTPA was able to characterize senescent oocytes, as assessed by the level of oxidative stress. It is also possible to identify high quality oocytes from those obtained for subsequent ICSI. In conclusion, this dual-activated oxidative stress-assessment probe enables the quality assessment of oocytes and has potential application in ICSI.


Assuntos
Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/etiologia , Infertilidade Masculina/terapia , Peróxido de Hidrogênio , Sêmen , Espermatozoides , Oócitos , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...